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Greenhouse-gas emission targets for limiting global
warming to 2 6C
Malte Meinshausen1, Nicolai Meinshausen2, William Hare1,3, Sarah C. B. Raper4, Katja Frieler1, Reto Knutti5,
David J. Frame6,7 & Myles R. Allen7

More than 100 countries have adopted a global warming limit of
2 6C or below (relative to pre-industrial levels) as a guiding prin-
ciple for mitigation efforts to reduce climate change risks, impacts
and damages1,2. However, the greenhouse gas (GHG) emissions
corresponding to a specified maximum warming are poorly
known owing to uncertainties in the carbon cycle and the climate
response. Here we provide a comprehensive probabilistic analysis
aimed at quantifying GHG emission budgets for the 2000–50
period that would limit warming throughout the twenty-first
century to below 2 6C, based on a combination of published dis-
tributions of climate system properties and observational con-
straints. We show that, for the chosen class of emission
scenarios, both cumulative emissions up to 2050 and emission
levels in 2050 are robust indicators of the probability that
twenty-first century warming will not exceed 2 6C relative to
pre-industrial temperatures. Limiting cumulative CO2 emissions
over 2000–50 to 1,000 Gt CO2 yields a 25% probability of
warming exceeding 2 6C—and a limit of 1,440 Gt CO2 yields a
50% probability—given a representative estimate of the distri-
bution of climate system properties. As known 2000–06 CO2

emissions3 were 234 Gt CO2, less than half the proven economi-
cally recoverable oil, gas and coal reserves4–6 can still be emitted up
to 2050 to achieve such a goal. Recent G8 Communiqués7 envisage
halved global GHG emissions by 2050, for which we estimate a 12–
45% probability of exceeding 2 6C—assuming 1990 as emission
base year and a range of published climate sensitivity distribu-
tions. Emissions levels in 2020 are a less robust indicator, but
for the scenarios considered, the probability of exceeding 2 6C
rises to 53–87% if global GHG emissions are still more than 25%
above 2000 levels in 2020.

Determining probabilistic climate change for future emission
scenarios is challenging, as it requires a synthesis of uncertainties
along the cause–effect chain from emissions to temperatures; for
example, uncertainties in the carbon cycle8, radiative forcing and
climate responses. Uncertainties in future climate projections can
be quantified by constraining climate model parameters to reproduce
historical observations of temperature9, ocean heat uptake10 and
independent estimates of radiative forcing. By focusing on emission
budgets (the cumulative emissions to stay below a certain warming
level) and their probabilistic implications for the climate, we build on
pioneering mitigation studies11,12. Previous probabilistic studies—
while sometimes based on more complex models—either considered
uncertainties only in a few forcing components13, applied relatively
simple likelihood estimators ignoring the correlation structure of the
observational errors14 or constrained only model parameters like
climate sensitivity rather than allowed emissions.

Using a reduced complexity coupled carbon cycle–climate
model15,16, we constrain future climate projections, building on the
Fourth IPCC Assessment Report (AR4) and more recent research. In
particular, multiple uncertainties in the historical temperature obser-
vations9 are treated separately for the first time; new ocean heat uptake
estimates are incorporated10; a constraint on changes in effective
climate sensitivity is introduced; and the most recent radiative forcing
uncertainty estimates for individual forcing agents are considered17.

The data constraints provide us with likelihood estimates for the
chosen 82-dimensional space of climate response, gas-cycle and radi-
ative forcing parameters (Supplementary Fig. 3). We chose a Bayesian
approach, but also obtain ‘frequentist’ confidence intervals for climate
sensitivity (68% interval, 2.3–4.5 uC; 90%, 2.1–7.1 uC), which is in
approximate agreement with the recent AR4 estimates. Given the
inherent subjectivity of Bayesian priors, we chose priors for climate
sensitivity such that we obtain marginal posteriors identical to 19
published climate sensitivity distributions (Fig. 1a). These distribu-
tions are not all independent and not equally likely, and cannot be
formally combined18. They are used here simply to represent the wide
variety of modelling approaches, observational data and likelihood
derivations used in previous studies, whose implications for an emis-
sion budget have not been analysed before. For illustrative purposes,
we chose the climate sensitivity distribution of ref. 19 with a uniform
prior in transient climate response (TCR, defined as the global-mean
temperature change which occurs at the time of CO2 doubling for the
specific case of a 1% yr21 increase of CO2) as our default. This distri-
bution closely resembles the AR4 estimate (best estimate, 3 uC; likely
range, 2.0–4.5 uC) (Supplementary Information).

Maximal warming under low emission scenarios is more closely
related to the TCR than to the climate sensitivity19. The distribution
of the TCR of our climate model for the illustrative default is slightly
lower than derived within another model set-up19, but within the
range of results of previous studies (Fig. 1b), and encompasses the
range arising from emulations by coupled atmosphere–ocean general
circulation models16 (AOGCMs) (Fig. 1c).

Representing current knowledge on future carbon-cycle responses is
difficult, and might be best encapsulated in the wide range of results
from the process-based C4MIP carbon-cycle models8. We emulate
these C4MIP models individually by calibrating 18 parameters in our
carbon-cycle model16, and combine these settings with the other gas
cycles, radiative forcing and climate response parameter uncertainties
gained from our historical constraining.

Additional challenges arise in estimating the maximum temper-
ature change resulting from a certain amount of cumulative emis-
sions. The analysis needs to be based on a multitude of emission
pathways with realistic multi-gas characteristics20,21, as well as varying
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shapes over time. AOGCM results for multi-gas mitigation scenarios
were not available for assessment in the IPCC AR4 Working Group I
Report22. Consequently, IPCC AR4 Working Group III23 provided
equilibrium warming estimates corresponding to 2100 radiative
forcing levels for some multi-gas mitigation scenarios, using simpli-
fied regressions (Supplementary Fig. 6). Thus, 15 years after the first
pioneering mitigation studies11,12, there is still an important gap in
the literature relating emission budgets for lower emission profiles to
the probability of exceeding maximal warming levels; a gap that this
study intends to fill.

We compute time-evolving distributions of radiative forcing and
surface air temperature implications for the set of 26 IPCC SRES21

and 20 EMF-21 scenarios20 shown in Fig. 2a and b. We complement
these with 948 multi-gas equal quantile walk emission pathways24

that share—by design—similar multi-gas characteristics (Supplem-
entary Fig. 5) but represent a wide variety of plausible shapes, ranging
from early moderate reductions to later peaking and rapidly declin-
ing emissions towards near-zero emissions (Supplementary Infor-
mation). Whereas Fig. 2e shows a standard plot of global-mean tem-
perature versus time for two sample scenarios, Fig. 2f highlights the
strong correlation between maximum warming and cumulative
emissions. The fraction of climate model runs above 2 uC (dashed
line in Fig. 2f) is then our estimate for the probability of exceeding
2 uC for an individual scenario (as indicated by the dots in Fig. 3a).
We focus here on 2 uC relative to pre-industrial levels, as such a
warming limit has gained increasing prominence in science and
policy circles as a goal to prevent dangerous climate change25. We
recognize that 2 uC cannot be regarded as a ‘safe level’, and that (for
example) small island states and least developed countries are calling
for warming to be limited to 1.5 uC (Supplementary Information).

We chose the twenty-first century as our time horizon, as this time
frame is sufficiently long to determine which emission scenarios will
probably lead to a global surface warming below 2 uC. Under these
scenarios, temperatures have stabilized or peaked by 2100, while
warming continues under higher scenarios.

For our illustrative distribution of climate system properties, we
find that the probability of exceeding 2 uC can be limited to below
25% (50%) by keeping 2000–49 cumulative CO2 emissions from
fossil sources and land use change to below 1,000 (1,440) Gt CO2

(Fig. 3a and Table 1). If we resample model parameters to reproduce
18 published climate sensitivity distributions, we find a 10–42%
probability of exceeding 2 uC for such a budget of 1,000 Gt CO2. If
the acceptable exceedance probability were only 20%, this would
require an emission budget of 890 Gt CO2 or lower (illustrative
default). Given that around 234 Gt CO2 were emitted between
2000 and 2006 and assuming constant rates of 36.3 Gt CO2 yr21

(ref. 3) thereafter, we would exhaust the CO2 emission budget by
2024, 2027 or 2039, depending on the probability accepted for
exceeding 2 uC (respectively 20%, 25% or 50%).

To contrast observationally constrained probabilistic projections
against current AOGCM and carbon-cycle models, we ran each emis-
sion scenario with all permutations of 19 CMIP326 AOGCM and 10
C4MIP carbon-cycle model emulations16. The allowed emissions are
similar to the lower part of the range spanned by the observationally
constrained distributions, suggesting that the current AOGCMs do
not substantially over- or underestimate future climate change com-
pared to the values obtained using a model constrained by observa-
tions, although no probability statement can be derived from the
proportion of runs exceeding 2 uC (black dashed line in Fig. 3a).
Using an independent approach focusing on CO2 alone, Allen et al.27
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Figure 1 | Joint and marginal probability distributions of climate sensitivity
and transient climate response. a, Marginal probability density functions
(PDFs) of climate sensitivity; b, marginal PDFs of transient climate response
(TCR); c, posterior joint distribution constraining model parameters to
historical temperatures, ocean heat uptake and radiative forcing under our

representative illustrative priors. For comparison, TCR and climate
sensitivities are shown in c for model versions that yield a close emulation of
19 CMIP3 AOGCMs (white circles)16. Data sources for curves 1–25 are given
in Supplementary Information.
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find that a range of 2,050–2,100 Gt CO2 emissions from year 2000
onwards cause a most likely CO2-induced warming of 2 uC: in the
idealized scenarios they consider that meet this criterion, between
1,550 and 1,950 Gt CO2 are emitted over the years 2000 to 2049.

We explored the consequences of burning all proven fossil fuel
reserves (the fraction of fossil fuel resources that is economically
recoverable with current technologies and prices: Fig. 3b and
Methods). We derived a mid-estimate of 2,800 Gt CO2 emissions
from the literature, with an 80%-uncertainty range of 2,541 to
3,089 Gt CO2. Emitting the carbon from all proven fossil fuel reserves
would therefore vastly exceed the allowable CO2 emission budget for
staying below 2 uC.

Although the dominant anthropogenic warming contribution is
from CO2 emissions, non-CO2 GHG emissions add to the risk of
exceeding warming thresholds during the twenty-first century. We
estimate that the so-called non-CO2 ‘Kyoto gases’ (methane, nitrous
oxide, hydrofluorocarbons, perfluorocarbons and SF6) will constitute
roughly one-third of total CO2 equivalent (CO2 equiv.) emissions
based on 100-yr global warming potentials28 over the 2000–49 period.
Under our illustrative distribution for climate system properties, and
taking into account all positive and negative forcing agents as provided

by Table 2.12 in AR417, the cumulative Kyoto-gas emission budget for
2000–50 is 1,500 (2,000) Gt CO2 equiv., if the probability of exceeding
2 uC is to be limited to approximately 25% (50%) (Table 1).

For the lower scenarios, Kyoto-gas emissions in the year 2050 are a
remarkably good indicator for probabilities of exceeding 2 uC,
because for these scenarios (with emissions in 2050 below ,30 Gt
CO2 equiv.), radiative forcing peaks around 2050 and temperature
soon thereafter. This is indicated by the narrow spread of individual
scenarios’ exceedance probabilities for similar 2050 Kyoto-gas emis-
sions, as shown in Supplementary Fig. 1b. If emissions in 2050 are
half 1990 levels, we estimate a 12–45% probability of exceeding 2 uC
(Table 1) under these scenarios.

Emissions in 2020 are a less robust indicator of maximum warming
(note the wide vertical spread of individual scenario dots in
Supplementary Fig. 1c)—even if restricted to this class of relatively
smooth emission pathways. However, the probability of exceeding
2 uC rises to 75% if 2020 emissions are not lower than 50 Gt CO2

equiv. (25% above 2000). Given the substantial recent increase in fossil
CO2 emissions (20% between 2000 and 2006)3, policies to reduce
global emissions are needed urgently if the ‘below 2 uC’ target29 is to
remain achievable.
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Figure 2 | Emissions, concentrations and twenty-first century global-mean
temperatures. a, Fossil CO2 emissions for IPCC SRES21, EMF-2120 scenarios
and a selection of equal quantile walk24 (EQW) pathways analysed here;
b, GHGs, as controlled under the Kyoto Protocol; c, median projections and
uncertainties based on our illustrative default case for atmospheric CO2

concentrations for the high SRES A1FI21 and the low HALVED-BY-205030

scenario, which halves 1990 global Kyoto-gas emissions by 2050; d, total
anthropogenic radiative forcing; e, surface air global-mean temperature;
f, maximum temperature during the twenty-first century versus cumulative
Kyoto-gas emissions for 2000–49. Colour range shown in e also applies to
c, d and f.
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METHODS SUMMARY

To relate emissions of GHGs, tropospheric ozone precursors and aerosols to gas-

cycle and climate system responses, we employ MAGICC 6.016, a reduced com-

plexity coupled climate–carbon cycle model used in past IPCC assessment

reports for emulating AOGCMs. Out of more than 400 parameters, we vary 9

climate response parameters (one of which is climate sensitivity), 33 gas-cycle

and global radiative forcing parameters (not including 18 carbon-cycle para-

meters, which are calibrated separately16 to C4MIP carbon-cycle models8), and

40 scaling factors determining the regional 4 box pattern of key forcings

(Supplementary Table 1). Other parameters are set to default values16.

To constrain the parameters, we use observational data of surface air temper-

ature9 in 4 spatial grid boxes from 1850 to 2006, the linear trend in ocean heat

content changes10 from 1961 to 2003 and year 2005 radiative forcing estimates

Table 1 | Probabilities of exceeding 2 6C

Indicator Emissions Probability of exceeding 2 uC*

Range Illustrative default case{

Cumulative total CO
2

emission 2000–49 886 Gt CO
2

8–37% 20%
1,000 Gt CO

2
10–42% 25%

1,158 Gt CO
2

16–51% 33%
1,437 Gt CO

2
29–70% 50%

Cumulative Kyoto-gas emissions 2000–49 1,356 Gt CO
2

equiv. 8–37% 20%
1,500 Gt CO

2
equiv. 10–43% 26%

1,678 Gt CO
2

equiv. 15–51% 33%
2,000 Gt CO

2
equiv. 29–70% 50%

2050 Kyoto-gas emissions 10 Gt CO
2

equiv. yr21

6–32% 16%
(Halved 1990) 18 Gt CO

2
equiv. yr21

12–45% 29%
(Halved 2000) 20 Gt CO

2
equiv. yr21

15–49% 32%
36 Gt CO

2
equiv. yr21

39–82% 64%
2020 Kyoto-gas emissions 30 Gt CO

2
equiv. yr21 (8–38%){ (21%){

35 Gt CO
2

equiv. yr21 (13–46%){ (29%){
40 Gt CO

2
equiv. yr21 (19–56%){ (37%){

50 Gt CO
2

equiv. yr21 (53–87%){ (74%){

*Range across all priors reflecting the various climate sensitivity distributions with the exception of line 12 in Fig. 3a.
{Note that 2020 Kyoto-gas emissions are, from a physical perspective, a less robust indicator for maximal twenty-first century warming with a wide scenario-to-scenario spread (Supplementary Fig. 1c).
{ Prior chosen to match posterior of ref. 19 with uniform priors on the TCR.
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for 18 forcing agents17, in addition to a constraint on the twenty-first century
change of effective climate sensitivity derived from AOGCM CMIP3 emula-

tions16. With a Metropolis-Hastings Markov chain Monte Carlo approach, based

on a large ensemble (.3 3 106) of parameter sets using 45 parallel Markov

chains with 75,000 runs each, we estimate the posterior distribution of different

MAGICC parameters. Estimated likelihoods take into account observational

uncertainty and climate variability from various AOGCM control runs,

HadCM3 being the default.

For forward projections with the model, we combine, at random, 600 sets of

the 82 historically constrained parameters with one of 10 carbon-cycle calibra-

tions. We supplemented 26 multi-gas IPCC SRES21 and 20 EMF-21 reference and

mitigation scenarios20 by 948 equal quantile walk multi-gas pathways24. The

proven fossil fuel reserve estimates for natural gas, oil and coal were compiled

from various sources4,5 by combining the reserve estimates with net calorific

values and emission factors (and their 95% uncertainty ranges) according to

IPCC 2006 guidelines6 (Supplementary Information).

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Coupled carbon cycle–climate model. We use a reduced complexity coupled

carbon cycle climate model (MAGICC 6.0), requiring (hemispheric) emissions

of GHGs, aerosols, and tropospheric ozone precursors as inputs for calculating

atmospheric concentrations, radiative forcings, surface air temperatures, and

ocean heat uptake. MAGICC is able to closely emulate both CMIP326

AOGCMs and C4MIP8 carbon-cycle models, and has been used extensively in

past IPCC assessment reports16. We use MAGICC 6.0 here both for future

climate projections based on historical constraints and for emulating more

complex AOGCMs or carbon-cycle models. The model contains many para-

meters whose values are uncertain. We looked at the impact of 82 parameters

on model behaviour, which are summarized in the vector H.

Observational constraints. As one set of observational constraints, we use yearly

averaged temperatures in our four grid boxes (Northern and Southern

Hemisphere Land and Ocean) as provided in ref. 9 for the years 1850–2006.

We arrange those measurements in a 628-dimensional vector T. The respective

space-time dependency of the errors is obtained from ref. 9. We use the full-length

control runs of all AOGCMs runs available at PCMDI (http://www-pcmdi.llnl.

gov/, as of mid-2007) to assess internal variability. We project the 628-

dimensional vector of temperature observations into a low-dimensional sub-

space. We choose m so that 99.95% of the MAGICC variance is preserved and

find that an eight-dimensional subspace is sufficient but findings are insensitive to

this choice. We then find the m 3 628-dimensional matrix Pm, which corresponds

to the projection of T into the space spanned by the first m PCA components. The

likelihood is finally based on the m-dimensional vector Tm 5 PmT instead of the

628-dimensional vector T. We now assume that the internal variability of Tm has a

Gaussian distribution and estimate the m 3 m-dimensional covariance matrix

Sm from the data set as Pm S Pm
T, where S is the previously derived covariance

matrix of the observations (including internal variability and measurement

errors).

Ocean heat uptake is only considered via its linear trend Z1 of 10.3721 (1s:

6 0.0698) 1022 J yr21 for the heat content trend over 1961 to 2003 up to 700 m

depth10. See Supplementary Fig. 2 for the match between the constrained model

results and the observational data31 as well as more recent results10.

Radiative forcing estimates as listed in ref. 17 (Table 2.12 therein) provide an

additional set of 17 constraints Z2,...,Z18 (Supplementary Table 2). The error of

14 of these radiative forcing estimates is assumed to have a Gaussian distribution.

The remaining 3 observational constraints, however, exhibit skewness, which we

model by a distribution we call here ‘skewed normal’ (Supplementary

Information). All radiative forcing uncertainties are assumed to be independent.

Given that MAGICC 6.0 has substantially more freedom to change the effec-

tive climate sensitivity over time16 than what is observed from AOGCM dia-

gnostics, we introduce another constraint Z19. This constraint limits the ratio of

the twenty-first century change in effective climate sensitivity, expressed by the

ratio of average effective climate sensitivities in the periods 2050–2100 and 1950–

2000. Based on AOGCM CMIP3 model emulations16, we derive a distribution

with a median at 1.23 (with a 90% range between 1.06 to 1.51) under the SRES

A1B scenario.

Likelihood estimation. To calculate the likelihood, the observations are split

into the projected temperature observations Tm and the remaining observational

constraints Z1,...,Z19. Let f be the density of temperature observations under a

given parameter setting H, taking into account both the measurement errors and

internal climate variability. Let hk, k 5 1,…,19, be the density functions of the

remaining observational constraints. Under independence of Z1,...,Z19 and T, the

likelihood L(H) of model parameters H is given by:

We follow mostly a Bayesian approach. A prior distribution p over the para-

meter vector H is specified in various ways as discussed further below, see

Supplementary Table 1 for prior assumption on key parameters. Given the a

priori assumption, we are able to specify the posterior distribution g(H) of the

parameters as proportional to the product of the likelihood L(H) and the prior

p(H).

Sensitivity to the chosen prior and a comparison with frequentist inference are
discussed further below. For frequentist inference, we work directly with the

likelihood.

Model sampling. To draw models from the posterior distribution g(H), we use a

Markov chain Monte Carlo approach and a standard Metropolis-Hastings algo-

rithm with adaptive step sizes to attain an average acceptance rate of 60%. 45

Markov chains are run in parallel for 75,000 iterations each. Adjusting for a

burn-in time of 20,000 iterations, and retaining only every 30th model, to

decrease dependence between successive models, a total of 82,500 models are

drawn from the posterior distribution. For probabilistic forecasts, 600 models

with maximal spacing in this set of 82,500 models are retained and combined

randomly with one of the 10 parameter sets used for emulating individual

C4MIP carbon-cycle models16.

Representation of climate sensitivity distributions. Apart from the frequentist

likelihood confidence intervals, we represent the wide range of literature studies on

Bayesian climate sensitivity distributions19,32–41. Specifically, we change the prior

for climate sensitivity such that a match between our posterior PDF of climate

sensitivity and the posterior distribution in the considered studies is achieved.

Fossil fuel reserves. Our median estimates of proven recoverable fossil fuel
reserves are based on ref. 42, with the exception of the non-conventional oil

reserves which are taken as the median between ref. 43 and ref. 44. Potential

emissions are estimated using IPCC 2006 default net calorific values and carbon

content emission factors6 (Table 1.2 and Table 1.3 therein).

We estimate the 80% uncertainty range in these reserve estimates as being

610% of the WEC42 estimates or the range of estimates in the literature4,43–46,

whichever is greater, for individual classes of reserves. We combine these reserve

uncertainties with the provided 95% ranges of calorific values and emission

factors for each class of energy reserves6 (Supplementary Table 3). See

Supplementary Information for an expanded description of the methods.
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